[This question paper contains 6 printed pages.]

Your Roll No.....

Sr. No. of Question Paper: 2333

IC

Unique Paper Code

: 42221201

Name of the Paper

: Electricity, Magnetism and

EMT

Name of the Course

: B.Sc. (Prog.)

Semester

de

Duration: 3 Hours

Maximum Marks: 75

Instructions for Candidates

- Write your Roll No. on the top immediately on receipt of this question paper.
- 2. Attempt Five questions in all.
- Question No. 1 is compulsory. Attempt four questions from the rest of the paper.
- Use of non-programmable scientific calculator is allowed.
- 1. Attempt any five of the following:
 - (a) If $\varphi(x,y,z) = 3x^2y y^3x^2 + z^2$, calculate gradient of φ at the point (1, -2, -1).
 - (b) Can the following be a possible electrostatic field?

$$\vec{E} = xy\hat{i} + 2yz\hat{j} + 3xz\hat{k}$$

- (c) State Poynting theorem and explain what do you understand by the Poynting vector.
- (d) If \vec{A} and \vec{B} are irrotational, prove that $\vec{A} \times \vec{B}$ is solenoidal.
- (e) Prove that $\vec{\nabla} \cdot \vec{B} = 0$ and explain its physical significance.
- (f) Distinguish between dia-, para- and ferro-magnetic materials.
- (g) Discuss the difference between induced electric field and electric field due to static charges.

 $(5 \times 3 = 15)$

(a) Find the work done in moving a particle in the force field

$$\vec{F} = (2x + y^2)\hat{i} + (3y - 4x)\hat{j}$$

along the straight lines from (0,0) to (2,0), then to (2,1), then to (0,0).

(b) Show that the following function is a sink field

$$\vec{V} = \frac{-x\hat{i} - y\hat{j}}{\sqrt{x^2 + y^2}}$$

(c) Prove that $\vec{\nabla} \cdot (\vec{\nabla} \times \vec{A}) = 0$.

(6,6,3)

- (a) Use Gauss's law to find the electric field inside, outside and on the surface of a uniformly charged solid sphere having charge density ρ.
 - (b) Derive an expression for an electrostatic potential due to a uniformly charged spherical shell at a point inside and charie the shell.
 - (c) The electric potential at any point (x,y,z) is given by $V = x(3y^2 x^2 + z)$. Find the electric field at that point. (6,6,3)
 - 4. (a) Derive $Q_p = Q\left(1 \frac{1}{k}\right)$ for a capacitor with dielectric between the parallel plates, where Q_p is the induced charge and k is dielectric constant. Calculate the capacitance of a parallel plate capacitor of plate area 5 cm² and separated by dielectric of dielectric constant 4 and thickness 1 cm.
 - (b) What is meant by polarization of a dielectric? Obtain generalized form of Gauss's law for a polarized dielectric.

P.T.O.

- (c) The magnetic field \vec{B} due to a current carrying circular loop of radius 10 cm at its centre is 0.2×10^{-4} T. Find the magnetic field due to this loop at a point on the axis at a distance of 6 cm from the centre.
- 5. (a) State and explain Biot-Savart's law. Derive an expression for the magnetic field at a point due an infinitely long straight current carrying conductor using Biot-Savart's law.
 - (b) State and prove Ampere's Circuital law. Starting from Ampere's circuital law, establish the relation $\vec{\nabla} \times \vec{B} = \mu_0 \vec{I}$.
 - (e) Define \vec{B} , \vec{M} and \vec{H} . Establish the relation $\vec{B} = \mu_0 \left(\vec{H} + \vec{M} \right). \tag{6.6.3}$
- (a) State the Faraday's law of electromagnetic induction. Show that

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

(b) Show that if the two coils having coefficient of self inductance L_1 and L_2 are mutually coupled together so that the whole of the flux from one coil links with the other, then the mutual inductance between the two coils is given by

 $M = \sqrt{L_1 L_2} .$

- (c) Derive the expression the energy stored in the magnetic field of inductor Find the energy stored in the Magnetic field of a 50 mH coil (6,6,3)carrying a current of 2 A
- (a) The magnetic field in a region is given by $\vec{B} = 3\hat{i} + 4\hat{k}$ tesla. Calculate the magnetic flux across the surfaces each of area 2 m2 in
 - (i) x-y plane (ii) y-z plane (iii) z-x plane.
 - (b) Write the four Maxwell's equations in an isotropic dielectric medium.
 - (c) Derive the wave equation for electric field and magnetic field vectors in an isotropic dielectric medium and hence obtain the velocity of electromagnetic wave in this medium.

(6,3,6)

Physical Constants:

$$\varepsilon_0 = 8.854 \times 10^{-12} \text{ C}^2/\text{N}\text{-m}^2$$

$$\mu_0 = 4\pi \times 10^{-7} \text{ Wb/A-m}$$

$$e = 1.6 \times 10^{-19} \text{ C}$$

$$c = 3 \times 10^8 \text{ m/s}$$

gowing S. L.

Download all NOTES and PAPERS at St